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Abstract--To investigate the higher order, multimodal characteristics of fabric data populations, five filter operators 
are constructed on the surface of the reference hemisphere for convolution with fabric data. These operators include 
spherical unit disk, triangle, sinc, sinc 2 and Gaussian functions. To illustrate filter performance, two fabric data sets. 
taken from the lower Schoonover sequence of the Northern Independence Mountains. Nevada, are convolved with 
the filters. The results show that the spherical unit disk, triangle and sinc operators are especially useful for 
identifying characteristics of the population density distribution and related probability contours for unimodal data 
sets. The Gaussian and sinc 2 operators, however, provide increased resolution of the higher frequency components 
for multimodal fabric data sets, along with relative statistical probability contours from which inferences on the 
probability distribution of the population can be made. In general, the convolution process is a very effective tool for 
analyzing the multimodal behaviour of fabric data, because of the ease and the flexibility with which filter operators 
may be designed. 

I N T R O D U C T I O N  

) 

FABRIC DATA registered over the surface of a reference 
hemisphere are usually presented as contours of a statisti- 
cally approximate population density distributiofi on an 
equal-area projection. An extensive literature is available 
on the methods of presenting fabric data and their density 
distributions in which the principles are explained to- 
gether with their limitations and applications. Included 
here are the works of Kamb (1959), Hertweck & Krfic- 
keberg (1962, 1963), Robinson (1963), Turner & Weiss 
(1963), Nobel & Eberly (1964), Spencer & Clabaugh 
(1967), Adler et al. (1968), Warner (1969), LaFountain 
(1970), Sander (1970) and Burger (1972). Contouring 
techniques have been extensively described by Harbaugh 
& Merriam (19681 while statistical considerations have 
been presented by Scheidegger (1965), Watson (1970) and 
Kohlbeck & Scheidegger (1977). Fabric diagram con- 
struction by computer has been optimized in terms of 
economy, reproducibility and accuracy by Kalkani & yon 
Frese (1976, 1979, 1980)using a technique which unifies 
the construction completely as a function of reference 
hemisphere geometry. 

The method of Kalkani & yon Frese (1979, 1980) 
considers the fabric elements in the light of their impinge- 
ment points on the gridded surface of the reference hemi- 
sphere. The population densities are determined by center- 
ing a spherical counting area on all fabric impingement 
points and counting the number of times a grid position 
is covered by the counting tool. Using a spherical counting 
area which is equal to I~o of the area of the reference 
hemisphere, the population density value (~o) at a spheri- 
cal grid point is given by lO0(n/N) ,  where N is the number 
of fabric elements considered and n is the number of times 
the grid point was covered by the counting tool. Contours 
of equal population density are then determined on the 
surface of the reference sphere and projected in an equal- 
angle or Lambert equal-area mode as the fabric diagram. 

The calculation of population densities by the method 
of Kalkani & yon Frese (1979, 1980) is equivalent to 
convolving the impingement points of the fabric data with 
a convolution operator or function defined by a spherical 
disk of unit thickness and area. The spherical unit disk 
operator is but one of many convolution operators, 
however, which can be designed to investigate a variety of 
fabric data features. 

In the present paper, the filtering properties of the 
spherical unit disk operator are compared with spherical 
triangle, sine, sinc 2 and Gaussian operators. For each 
case, the convolution is performed directly on the surface 
of the reference hemisphere using fabric data taken from 
the lower Schoonover sequence of the Northern Inde- 
pendence Mountains, Nevada. Contours of equal density 
of the convolved function, which represent the frequency 
distribution of the original data, are produced with 
variations that are related to the extent and nature of the 
convoiving function. The location of maximum values in 
clusters of high population density for the filtered data is 
determined with an accuracy which depends on the 
fineness of the grid employed. The concept can be 
expanded to determine probability or statistical boun- 
daries including percentages of the population. 

ANALYTICAL CONSIDERATIONS 

The density of fabric elements per unit solid angle on 
the surface of the reference hemisphere is a physical 
quantity which is sampled by recording the attitude of 
each fabric element. The distribution of directions in space 
assumed on a lattice in the B-dip, ~b-strike domain on the 
surface of the reference hemisphere forms the two- 
dimensional sample function f,(O, ~b) which is a close 
representation of the true distribution function f (O,  dp). 
The true distribution can be reconstructed with consider- 
able accuracy by simple interpolation between grid 
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points. In cases of sparsely sampled functions, however, 
the reconstruction is not as accurate, and more sophisti- 
cated mathematical techniques have to be used to de- 
termine f(O, /p). 

A common approach in one-dimensional space to 
recover the original function from the sampled one is 
convolution. To extend the technique to the two- 
dimensional space of the surface of the reference hemi- 
sphere, the N data points forming the data function 
Fd(O, c~) are regarded as unit impulses, (i.e. delta functions 
6(0 - 0 d, ~b - ~bd), convolved with an appropriate func- 
tion g(r/, ~), called a filter, to obtain sample values f,(0, ~) 
at the lattice points. Accordingly, the data function is 
given by 

N 

Fd(0,(~) = ~ (~(0 -- 0d, (~ -- (~d), (1) 
d=1 

and the filtered output by 

f ,(O, c~) = Fd * g 

,o  
= F,,(O - r/, q~ - ~) g(t/, ~) dr/d~, (2) 

.10 Jo 

where the 0 and 4~ spherical coordinates correspond to dip 
and azimuth on the surface of the reference hemisphere of 
radius R = I, and t/, ~ are local spherical coordinates used 
to integrate over the range 0 < ¢ < 2n and 0 < q < Ro, 
where Ro is a spherical radius calculated below. To 
compute the integral, the filter 0(r/, ¢) is centered at 
consecutive data points 0,t, ~d on the surface of the 
reference hemisphere. The products Fa(Od, dP,l)'g(r/,, ~t) 
are summed up for each grid point 0g, ~b s of a spherical 
lattice on the reference hemisphere within the base of 
g(r/, O. This procedure is repeated for each fabric element 
until the entire data space has been covered. Hence, the 
convolution integral is the sum of products of cor- 
responding values of Fd(0, q~) and g(r/, ~) where the filter 
has been centered successively on each of the fabric data 
points. 

The usual procedure with a sample of No data points is 
to consider an operator with its range of variables within a 
spherical area a equal to a fraction 1/K of the area of the 
reference hemisphere A. The spherical area a along with 
the spherical radius R o can be computed from the 
following equations {see also Kalkani & yon Frese 1976, 
1979): 

A = 2rrR 2, (3) 

a = (I/K)A, (where K > 1, usually K = No), (4) 

a = 2rtR2/No, (5) 

a = n(2Rsin(Ro/2)) 2 and (6) 

Ro = 2sin- l (1/ , , f i~o) .  (7) 

For the case of N observations such that N # No and 
K # N o, the convolution operator has to be normalized 
for comparison with the standard diagram that is con- 
structed using No = 100 and the spherical unit disk 
operator. The normalization includes multiplication of 
the convolving function by the ratio No/N to account for 

N # N o, and multiplication by the ratio (Ro/Rk) 2, where 
R k is the spherical radius for the area a = (1/K)A. The 
convoiving function is also adjusted so that its volume. 
which corresponds to a solid of revolution about its 
centerline (normal to the surface of the reference hemi- 
sphere), is equal to the volume V o generated by the 
spherical unit disk operator. Introducing the above 
normalization, the resulting function fstO, ~) at the grid 
point 0 r ~b, for successive positions of the convolving 
function g(r/, ~) will be: 

V 

f ,(0v Os) = ~ (1/NXNo/N)(go/Rk)2g(r/, ~)i. (8) 
i = l  

The sum of the products fs(O v ~) ,  times the area 
around each grid point within the 0, ~ lattice, corresponds 
to the total volume V,, which is equal to V o because of the 
normalization over N observations. 

The convoiving function g(0, ~) must be symmetrical 
about its centreline at r /=  0, ~ = 0, because the con- 
volution process is assumed not only in two directions, 
but in all possible directions on the spherical surface. To 
simplify the mathematical descriptions, the function 
g(r/, ~) is considered in cross-section in a two-dimensional 
(x, y) coordinate system and expressed as ylx), where x 
varies from 0 to 1 as indicated in Fig. 1, and y(x) forms a 
solid of revolution around the y-axis. The volume of this 
solid is V o as previously described. According to the 
Pappus-Guldinus theorem, the solid of revolution 
formed by a planar area revolved about an axis in its plane 
which does not intersect the area, is equal to the product 
of the area times the length of the path traced by the 
centroid of the area. Accordingly, the volume V o is 
computed as follows: 

V o = 2n R sinlx/R) ylx)dx, 19) 
'~ 0 

where R is the radius of the reference hemisphere and y(x) 
is the function for the convolution operator. These 
elements along with the differential area y(x)dx and 
radius of revolution R sin(x/R) are illustrated in Fig. 1. 

The five operators chosen for the filtering function y(x) 

e 
| 

Wit y¢ 

Im ~ y(x~ia 

Fig. 1. Schematic diagram indicating the convolving function ylx) and 
the characteristic dimensions necessary to calculate the volume of the 

solid of revolution for the shaded area around the )-axis. 
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Fig. 2. Cross-sections for the five spherical operators .v~x ) (unit disk, triangle, sine, sinc 2, and Gaussian ) used in the convolution process. The volumes 
of the resultant solids of revolution around the centerline are equal to the volume of the solid of revolution generated by the spherical unit disk 

operator. 

Table 1. Expi'essions of the convolving function .v(x k values ofcoeificients C,,, revolving . 
areas S, revolving radii r and revolution volumes V o. for x ranging from 0 to 1 

n y(x ) C. S r V o 

1 C I 1 .(X)(K~ 1.0(XR~ 0.45969 2.88837 
2 C2 (1.00 - x) 2.89964 1.44982 0.31707 2.88837 
3 C 3 sinc(nx) 2.38387 1.40524 0.32713 2.88837 
4 C,  sine 2 (nx) 3.85139 1.73856 026441 2.88837 
5 C s e - ' .6°s  J': 4.42582 1.82337 025211 2.88837 
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Fig. 3. Equal area projection of the area of the reference hemisphere (left) and arenas of influence u ~ d  for each of th© filtering functions (right), as 
fractions of the ar©a of the reference hemisph©re. 
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in this study are illustrated in cross-section in Fig. 2, along 
with their algebraic expressions. The expressions of these 
functions also are given in Table 1. along with the 
coefficients required to produce constant volumes of 
revolution equal to V o for x in the range 0 to 1, the 
revolved areas S, and the radii of revolution r. The values 
of y(x) are introduced into the convolution process by 
setting x = Rr/Rk, where Rr is the spherical distance of the 
position of datum point 0 d, $d from the grid point 0 v $~ 
and Rk is the spherical radius of the maximum direction of 
the convolving function for a = (I/K)A. Four values of 
1/K are assumed in this study, namely I/K = 1/I00, 
4/100, 7/100 and 10/100. To facilitate comparisons, the 
equal-area projection of these areas and their respective 
radii are shown in Fig. 3, along with a projection of the 
area of the reference hemisphere. The expressions for R, 
and R k are: 

R, = cos-  ~ [cos 0~ cos 0 s 

+ sin0dsin0gcos(~ d -- ~b~)], (10) 

R k = 2 sin-~ x / i l /2K) .  (11) 

The values of y(x) are divided by the number of 
observations N and normalized for No and K as described 
previously, so that the total volume V, of the function 
fdO, c~), produced on the reference hemisphere, will be 
equal to V o. 

APPLICATION OF  C O N V O L U T I O N  

Two fabric data sets. taken from the lower Schoonover 
sequence of the Northern Independence Mountains, 
Nevada, are investigated to demonstrate the filtering 
properties of the different convolution operators. The 
fabric data sets are illustrated in Fig. 4, where the left 
diagram gives the poles of the normals to the axial planes 

of the folds and the right diagram shows the positions of 
the fold axes. For the poles to the axial planes of the folds, 
the number of observations is N = 120, whereas for the 
positions of the fold axes N - 150. 

The convolution process was performed using the 
filtering functions previously described and indicated in 
Table I. The results of the convolution process are shown 
as density contours for all five filtering functions with a 
= (1/100)A and a = (4/100)A in Fig. 5 and a = (7/100)A 
and a = (10/100)A in Fig. 6. In each of the figures, the left 
two panels of diagrams correspond to the poles for the 
axial planes of the folds, and the right two panels to the 
positions of the fold axes. The areas of influence range 
from (I/100)A to (10/100)A. The lower limit corresponds 
to a = (l/100) for the usual fabric diagram of N = 100, 
where a single observation will produce a density equal to 
one per (l/100) of the area of the reference hemisphere, 
whereas a = (10/100)A is an upper limit above which the 
variation of radius of influence increases slowly. The equal 
intervals between the areas of influence indicate the effect 
of the convolution process in defining the position of the 
maximum distribution value. The contour values in Figs. 
5 and 6 indicate the loci of equal density, which cor- 
respond to the number of observations per unit area of the 
reference hemisphere. For the cases considered here, the 
density contours in all diagrams are normalized to N 
= 100 observations and to the unit area a = (1/100) of the 
area of the reference hemisphere. Also, the total volumes 
of the convolution operators have been normalized to the 
volume of the solid of revolution of the spherical unit disk 
operator. 

A computer program was developed to perform fabric 
data convolution which is available from the authors on 
request. For Figs. 5 and 6, the convolution values were 
calculated at each grid point of an (18 x 72) array over the 
surface of the reference hemisphere (18 dip-elements and 
72 azimuth-elements, which corresponds to a grid interval 
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Fig. 4. Equal area projections of two fabric data ~ts which indicate,, for ihe lower Schoonover sequeno~ of Northern lnd~0clldtm~ Mouatams, 
Nevada (courtesy of Dr. Russ Dyer, Stanfordk the poles to the axial planes of the folds (left) and the positions of the fold axes  (right). 
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RXIRL PLRNES OF FOLDS POSITIONS OF FOLD RXES 
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Fig. 5. Density contours at 1% contour interval of the two data ~ts  of Fig. 4, for all filtering functions indicated in Fig. 2, with areas ofinflu©nce a equal 
to 1/100 and 4/100 of the area of the reference hemisphere A. 
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Fig. 6. Density contours at 1% contour interval of the two data scls of Fig. 4, for all filtering functions indicated in Fig. 2, with areas of influence a equal 
to 7./100 and 10/100 of the area of the reference hemisphere A. 
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of 5: ). The density contours were produced on the surface 
of the reference hemisphere and projected onto the 
meridial plane in an equal-area mode. The maximum grid 
value encountered was printed and its position also 
indicated on each diagram. The position and magnitude 
of the maximum value depends on the filtering function 
used and its area of influence, as well as the fineness of the 
grid. 

Comparison of the diagrams in Figs. 5 and 6 show a 
number of interesting results which include the following: 

(1)Application of the spherical unit disk operator tends 
to average the positions of the mean, median and mode of 
the distribution, and indicates the position of the maxi- 
mum at the centre of the distribution. 

(2j Application of the spherical triangle and sinc 
operators yield similar fabric diagrams, with weak con- 
centrations of contours indicating two or more clusters in 
the distribution. 

(3) Application of the sinc 2 and Gaussian operators give 
similar fabric diagrams, with distinct concentrations of 
contours indicating two or more clusters in the 
distribution. 

(4) Increasing the area of influence for all filtering 
functions lowers the high frequency cut-off, and removes 
some of the smaller, and perhaps distracting details of the 
density distribution of the fabric data. 

POPULATION PARAMETERS 

Due to the normalization process, the volume of the 
density diagram in each density drawing is constant, and 
equal to the volume of revolution of the spherical unit disk 
function for a = (1/100)A. The peak or peaks of the 
individual clusters of the distribution vary in position and 
magnitude as the filtering function varies, and as the area 
of influence of the filtering function increases. For this 
part of the study, only areas of influence equal to a 
= (7/100)A and a = (10/100)A are considered, because 
the resulting density distributions are closer to a Gaussian 
distribution of the form y(x) = ~exp(-//x2). Inferences 
about the probability distribution of the population will 
be drawn from the distribution of the sample, which in our 
case is sufficiently large. 

The distribution of fabric data, as is the case for most 
natural distributions, follows a binomial distribution, 
which at the limit where the number of observations N 
becomes large, approaches a normal distribution. The 
resultant distributions for the two fabric data sets are 
compared to a normal or Gaussian distribution with 
maximum at x = 0.00 and 1/100 of the maximum at x 
= _+ 1.0. The volume of the solid of revolution for the 
Gaussian curve is calculated and the relative elevation 
contours are chosen to include 10, 20 . . . . .  90% of the 
population for each duster. The values of the resulting 
distributions in Fig. 6 can be contoured at levels that are 
calculated as the product of a normalization factor (see 
Appendix) times the values of the normal curve for which 

the included percentages of the observations are prede- 
termined at 10~o contour intervals. Accordingly, the 
resulting contour levels will correspond to loci of points 
which include 10, 20 . . . . .  90°,/0 of the population for each 
cluster. These are here called statistical probability con- 
tours and are created on the surface of the reference 
hemisphere and, subsequently, projected onto the meri- 
dial plane. 

Statistical probability contours, which correspond to 
loci of points from 90~o of the population (peripheral 
contour), to l 0~o of the population (contour closest to the 
position of the maximum) are shown in Figs. 7 and 8. 
These results are contoured at 10~o intervals for all 
filtering functions and areas of influence equal to 7/100 
and 10/100 of the area of the reference hemisphere. The 
diagrams of Fig. 7 correspond to statistical contours for 
the cluster with the largest peak as recorded on the density 
diagrams of Fig. 6, while the statistical contours of Fig. 8 
are normalized to the cluster with the second largest peak 
on the density diagrams of Fig. 6. 

Comparison of Fig. 7 and Fig. 8 shows a number of 
results that principally include the following. 

(1) The spherical unit disk operator gives a single 
maximum derived from averaging the positions of the 
median, mode and mean of the distribution. Hence, the 
statistical probability contours that correspond to this 
cluster of the density distribution are valid for the total set 
of the observations. 

(2) The spherical triangle and sinc operators each 
indicate two maxima of the population, which are more 
pronounced for the sinc 2 and the Gaussian operators. For 
these cases, the statistical probability contours between 
clusters are overlapping, while at the peripheries they 
represent true probabilities around the cluster for which 
the statistical contours are drawn. 

CONCLUSIONS 

Application of convolution to fabric data on the surface 
of the reference hemisphere produces density diagrams 
with high frequencies attenuated, and density distri- 
butions that depend on the convolving or filtering func- 
tion as well as the area of influence of the function on the 
surface of the reference hemisphere. Use of the spherical 
unit disk function produces a maximum at the centre of 
the distribution and statistical probability contours which 
are symmetrical about the central peak. The spherical 
triangle and sinc functions, on the other hand, yield 
similar diagrams, while the sinc 2 and the Gaussian 
functions give population density diagrams with in- 
creased resolution of the multimodal components of the 
fabric data. For these cases, second order clusters of the 
fabric data can be identified, as well as statistical contours 
for each individual cluster which indicate the probability 
of occurrence of fabric data, where no overlapping of the 
clusters is present. 

For geotechnical applications, the convolution process 
applied to fabric data with appropriate filter operators 
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Fig. 7. Statistical contours at I0% probability interval of the two data sets of Fig. 4, for all filtering functions indicated in Fig. 2, with areas of influence 
a equal to 7/100 and 10/100 of the area of the refereace hemisphere A, after normalizing to the highest cluster peak value {highest cluster maximum is 

indicated). 
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Fig. 8. Statistical contours at 10% probability interval of the two data sets of Fig. 4, for all filtering functions indicated in Fig. Z with areas of influence 
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can provide an objective picture of the relative statistics for 
the data population. These procedures, for example, can 
be used by the design engineer to locate areas of the fabric 
diagram containing 66 or 905o of the data population, as 
well as to statistically differentiate between one or more 
clusters of the fabric data. The convolution process, in 
general, is a very effective approach for investigating the 
multimodal characteristics of fabric data populations, 
because appropriate filter operators frequently can be 
specified and designed with little difficulty. Accordingly, 
this approach has widespread application in kinematic 
and dynamic analyses of fabric data, where convolution 
with appropriately designed operators can be used to 
focus upon the higher order, multimodal behaviour of 
fabric data populations. 

REFERENCES 

Adler, R. E., Kriickeberg, F., Pfisterer, W., Pilger, A. & Schmidt, M. W. 
1968. Elektronische Datent~erarbeitun# in der Tektonik. Clausthaler 
Tektonische Hefte 8, Inst. Techn. Univ. ClausthaL Zelleffeld, W. 
Germany. 

Burger, H. R. 1972. Computerized solution for calculating calcite 
compression and tension axes. Bull. geol. Soc. Am. 83, 2439-244Z 

Hurbaugh, J. W. & Merriara, D. F. 1968. Computer Applications in 
gtratigraphic Analysis. John Wiley, New York. 

Hertweck, G. & Krtickeberg, F. 1962. Die statistisch¢ Ausz.ahlung yon 
Gefiigediagrammen durch elektronische Rechenanlagen, Ariz. 6st. 
Akad. Wiss. 9, 1-132. 

Hertweck, G. & Krtickeberg, F. 1963. Die Behandlung yon Gefiig~iia$- 
rammen dutch elektronische Rechenanlagen, Neues Jb. Geol. Paliiont. 
Mh. 86--98. 

Kalkani, E. C. & yon Fres¢, R. R. B. 1976. A comparison of fabric 
diagrams in terms of reproducibility, accuracy and economy. Bull. 
Ass. Engng Geol. 13, 297-313. 

Kalkani, E. C. & yon Fres¢, R. R. B. 1979. An efficient construction of 
equal-area fabric diagrams. Comput. Geosci. 5, 301-311. 

Kalkani, E. C. & yon Fres¢, R. R. B. 1980. Computer construction of 
equal-angle fabric diagrams and program comparisons. Comput. 
Geosci. 6, 279-288. 

Kamb, W. B. 1959. Ice petrofabric observations from Blue Glacier, 
Washington, in relation to theory and experiment. J. geophys. Res. 64, 
1891-1909. 

Kohlbeck, F. & Scheidegger, A. E. 1977. On the theory of the evaluation 
of joint orientation measurements. Rock Mech. 9, 9-25. 

LaFountain, L. J. 1970. Plotted and point contoured stereogratm by 
computer, X-Y plotter, or microfilm devices. Bull. geol. Soc. Am. 81, 
1267-1272. 

Nobel, D. C. & Eberly, S. W. 1964. A digital computer procedure for 
preparing Beta diagrams. Am. J. Sci. 262, 1124-1129. 

Robinson, P. 1963. Preparation of Beta diagrams in structural geology 
by digital computer. Am. J. Sci. 261,913-928. 

Sander, B. 1970. An Introduction to the Stud)' of Fabric of Geologic 
Bodies. Pergamon Press, New York. 

Scheidegger, A. E. 1965. On the statistics of the orientation of bedding 
planes, grain axes, and similar sedimentological data. Prof. Pap. U.S. 
Geol. Sun'. 525-C, C164-C167. 

Spencer, A. B. & Clabaugh, P. S. 1967. Computer program for fabric 
diagrams. Am. J. Sci. 265, 166-172. 

Turner, F. J. & Weiss, L. E. 1963. Structural Analysis of Metamorphic 
Tectonites. McGraw-Hill, New York. 

Warner, J. 1969. FORTRAN IV program for the construction of PI 
diagrams with the UNIVAC 1108 computer. Kansas Geol. Surv, 
Comput. Contrib. 33. 1-38. 

Watson, G. S. 1970. Orientation statistics in the earth sciences. Bull. geol. 
lnsm Univ. Upsala N.S. 2, 73-89. 

APPENDIX 

1. Theoretical curve 

The normal or Gaussian curve is of the form 

y(x) = ~e -~ : ,  (I) 

with totalvolume of revolution V o for the range x = 0 to ~ ,  and partial 
volun'm V~ for the range x -- 0 to .,q according to the equations: 

V o = 2nxylx)dx = = ---~--e- 
. o  ., o = f l - '  (2) 

g)x ,  KCt - O x :  ~ x l  ?r,v , 
Vl = ! o 2~x),(x)dx = - -~-e o = -~-(1 - e-~'~). (3) 

The differential volume of the solid o f f . g l u t t o n  can also be expressed 
in terms of the angle 0 and the surface y(x) dx integrated over x = 0 to ~c. 
For practical purposes, integration to infinity on the surface of the 
reference hemisphere is truncated at the distance where .v(x) becomes 
equal to 1/100 of the maximum value y(x = 0). The differential volume 
for each increment d0 integrated over (2it) gives the total volume V 0 and 
partial volume V t as 

f"((" ) Vl = x : t e - ~ " d x  dO, (5) 
? 0  \ " 0  s 

which, after reducing the integrals, are equal to the values of equations 
(2) and (3). 

2. True distribution 

In the measured data we observe that the total volume of the 
distribution may consist of one or more clusters. We assume for each 
cluster normal distributions with cluster overlap within the distribution. 
If the normal curve of each cluster i is of the form 

.v(x) = 7 e-~x:, (6) 

with -: and ~ corresponding to the ith cluster, the following equations 
hold, for the total volume (Voh for the range o fx  = 0 to -£ and partial 
volunq=e (V t )  i for the range x = 0 to x, ,  in terms of the equation (6) 

= i"( |'"  /d0 ,7, (Vo), 
J o  \ J o  x':e-a'' ' 

(v,), = f2o" ( f?:.~Te-": dx)dO. (8) 

The values of the total and partial volume in terms of the proportionality 
c o n s t a n t  m l  ate 

(Vo}i = miV+, (9) 

('Vl)i = mi Vr  (10) 
The value of 7 is constant and is the maximum value of the cluster. 

while the value 5 is a function of 0 and defines the shape of the 
distribution. This means that in plan the distribution is not a circle, but a 
wavy line that can be approximated by a circle. The expressions for ( V 0 )~ 
and (Vt), can be written after integration over x as 

~ 2 s . ,  

(Vo)i = ~--dO I l l )  
j o : ~  " 

(Vth -- (1 - e-')"~)dO = ~-~dO - dO. (12l 
o .o  .0 Jo 2~ 

3. Calculation of probability contours 

Introducing 

Y, = ",e -~*~, (13) 

)'z -- ; ' e -  a~'l, (14) 

as the contour heights of the specific volume VI, where subscripts for x 
and y are (1) and (2) corresponding to the theoretical curve and the 
measured distribution respectively, and assuming the variation of~i with 
angle 0 is small, or otherwise assuming 6 constant and integrating, we 
can express equations ( 11 ) and (12) as 

(Vo)i It,' --- - -  (15) 
6 

rt'¢, ;'t 
(Vl)i = ~- - ~Yz, (16) 



Convolution of fabric data to determine probability distribution 103 

and rewrite equation (3) as 

To[ 
l/l = T - ~Yt"  (17) 

Using equations (9)and (IOL the systems ofequat ions  {(15), (16)} and 
{(2). (17)} can be written as 

~=m,~, (IS) 

y 1 ", 1 

so that by eliminating m~ we get 

7 
)'2 = - . r v  (20) 

In our case ,, is the max imum value of the convolving normal curve, ;. is 
the maximum of the zth cluster of the resulting distribution and y. is the 
contour for which the included volume is equal to |~ .  The values y~ for 
the convolving normal  function have been calculated for 10, 20 . . . . .  90% 
of the total volume, which correspond to the probability of occurrence of 
observations within the contours. Equation (20) indicates that ~2 is 
calculated in terms of y~, where 7 and • are known (i.e. y~ and "I are 
computed from the theoretical normal distribution, and ; is the 
max imum of the individual cluster). 

The ratio 7:"~ is the normalization factor applied to produce the 
contours of Figs. 7 and 8 for the highest and second highest cluster peak s, 
respectively. 


